IMPACT OF JET

5.0 RESULT

Given:

$$
\begin{aligned}
& \rho H 2 O=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& D=8 \mathrm{~mm} \text { (diameter of the nozzle) }
\end{aligned}
$$

Table 1 Flat Impact Surface $\left(\alpha=90^{\circ}\right)$

Volume $=\quad$ ho=							Theoretical Force, $F_{a}=\mathrm{ma}$ (N)
Mass (g)	Time (s)	Flow Rate, $\begin{gathered} \mathrm{Q} \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \end{gathered}$	Exit Velocity, u $(\mathrm{~m} / \mathrm{s})$	Height of target plane from nozzle exit, $h,(\mathrm{~mm})$	$\begin{gathered} \text { Impact } \\ \text { Velocity, } v \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	Experimental Force, F_{y} (N)	

Table 2 Curved Impact Surface $\left(\alpha=120^{\circ}\right)$

Volume $=$ ho=							Theoretical Force, $F_{a}=\mathrm{ma}$ (N)
Mass (g)	Time (s)	Flow Rate, $\begin{gathered} \mathrm{Q} \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \end{gathered}$	Exit Velocity, $\begin{gathered} u \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	Height of target plane from nozzle exit, $h,(\mathrm{~mm})$	$\begin{gathered} \text { Impact } \\ \text { Velocity, } v \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	Experimental Force, F_{y} (N)	

Table 3 Curved Impact Surface $\left(\alpha=180^{\circ}\right)$

Volume = ho=							
Mass (g)	Time (s)	Flow Rate, $\begin{gathered} \mathrm{Q} \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \end{gathered}$	Exit Velocity, u $(\mathrm{~m} / \mathrm{s})$	Height of target plane from nozzle exit, h (mm)	Impact Velocity, v (m / s)	Experimental Force, F_{y} (N)	Theoretical Force, $F_{a}=\mathrm{ma}$ (N)

CALIBRATION OF A PRESSURE GAUGE

(DEAD WEIGHT PRESSURE)

5.0 RESULT

Cross-sectional area, $\mathrm{A}=$ \qquad m^{2}

Weight of piston
$=$ \qquad kg

Diameter of piston = \qquad m

Table 1 True pressures and gauge readings

Total load including piston weight (M)	Ptrue (True Pressure), $\left(\mathbf{k N} / \mathbf{m}^{2}\right)$	Gauge Reading (P actual) (kg)		(N)
		Increasing Pressure, $\left(\mathbf{k N} / \mathbf{m}^{2}\right)$	Decreasing Pressure, $\left(\mathbf{k N} / \mathbf{m}^{2}\right)$	

