

IMPACT OF JET

5.0 RESULT

Given:

 $ho H2O = 1000 \text{ kg} / \text{m}^3$

D = 8mm (diameter of the nozzle)

Table 1	Flat Impact Surface ($\alpha = 90^\circ$)
---------	---

Volum	e =			ho=			
Mass	Time	Flow Rate,	Exit	Height of	Impact	Experimental	Theoretical
(g)	(s)	Q	Velocity,	target plane	Velocity,v	Force, F_y	Force,
		(m ³ /s)	и	from	(m/s)	(N)	$F_a = ma$
			(m/s)	nozzle exit,			(N)
				h , (mm)			

Table 2 Curved Impact Surface ($\alpha = 120^{\circ}$)

Volum	e =			ho=			
Mass	Time	Flow Rate,	Exit	Height of	Impact	Experimental	Theoretical
(g)	(s)	Q	Velocity,	target plane	Velocity,v	Force, F_y	Force,
		(m ³ /s)	и	from	(m/s)	(N)	$F_a = ma$
			(m/s)	nozzle exit,			(N)
				h , (mm)			

Volum	e =			ho=			
Mass	Time	Flow Rate,	Exit	Height of	Impact	Experimental	Theoretical
(g)	(s)	Q	Velocity,	target plane	Velocity,v	Force, F_y	Force,
		(m ³ /s)	и	from	(m/s)	(N)	$F_a = ma$
			(m/s)	nozzle exit,			(N)
				h			
				(mm)			

Table 3 Curved Impact Surface ($\alpha = 180^{\circ}$)
---	--------------------------

<u>CALIBRATION OF A PRESSURE GAUGE</u> (DEAD WEIGHT PRESSURE)

5.0 RESULT

Cross-sectional area,	 m ²	
Weight of piston	=	 kg
Diameter of piston	=	 m

Total load including piston weight (M)		Ptrue (True Pressure),	Gauge Reading (P actual)		
(kg)	(N)	(kN/m ²)	Increasing Pressure, (kN/m ²)	Decreasing Pressure, (kN/m ²)	

 Table 1
 True pressures and gauge readings