

DATA SHEET: BIOCHEMICAL OXYGEN DEMAND (BOD₃ at 30°C)

pH value : _____ NaOH or H₂SO₄ volume : _____

Time, (day)	DO _o		DOt		BOD _t	(t/BOD _t) ^{1/3}
	mg/L	°C	mg/L	°C	(mg/L)	(1202)
1						
2						
3						

$$BOD_{t} = \frac{DO_{i} - DO_{t}}{P}$$

Where:

BOD	Biochemical oxygen demand, mg/L
DOi	Initial DO of the diluted waste water sample about 15 min. after preparation, mg/L
DOt	Final DO of the diluted wastewater sample after incubation for t days,mg/L
Р	Dilution factor
	$P = \frac{\forall_S}{\forall_S + \forall_{DW}}$ $\forall_S = Volume \ of \ sample$ $\forall_{DW} = Volume \ of \ Dilution \ Water$

QUESTION:

- 1. Plot (t/BOD_t)^{1/3} versus time (day)
- 2. From the graph, determine the intercept (A) and slope (B) and calculate the K value where K = 2.61 (B/A).
- 3. Calculate value of BOD₅ at 20°C.
- 4. Discussion and conclusion on the results.